Forest Pathology

) BY-3.0. USFS-Region 2-Rocky Mtn. Region Archi 3FS, Bugwood.org

CC BY-3.0. R.L.Anderson, USFS, Bugwood.org

Richard Hamelin

CC By-3.0. USDA For.Serv.Archive, USFS, Bugwood.org

Are diseases the normal state?

- Diseases are integral part of natural ecosystems
- Natural pathosystems: equilibrium between trees and their pathogens

CC-BY-NC-3.0. S.K. Hagle, U8 Bugwood.org.

Ilinus weirii-1, Nat.Res.Canada,CFS s://tidcf.nrcan.gc.ca/diseases/factsheet/10000

What causes epidemics?

Forest (mis)-management

Invasive Alien pathogens

The disease triangle

Infamous Forest Pathogens

White Pine Blister Rust

Chestnut Blight

Sudden Oak Death

Sudden oak death now threatens more of Britain's trees

After destroying millions of oaks in California, the infection spread to Britain – then suddenly jumped species

Tracy McVeigh
The Observer, Sunday 16 January 2011
Article history

Fungi rule!

- 1.5 million species believed to exist! But only 70,000 described species of fungi
- As a comparison there are only about 8000 species of birds in the world

CC-BY-3.0. D.Powell, USFS, Bugwood.org

Microbes make trees!

Decline diseases of complex origin

Abiotic agents High temperature Freezing temperature Drought Nutrient deficiency

Mechanical damage

Roles of fungi in the forest

- Saprophytes
 - Decomposition of cellulose and lignin
 - Carbon and nutrient cycling

nyllum sepiarium, Nat.Res.Canada,CFS dcf.nrcan.gc.ca/diseases/factsheet/201

Symbionts

- Mycorrhizal association with plant roots
- Water, nutrient exchanges, protection

CC-BY-3.0. R.L.Anderson, USFS, Bugwood.org

Role of fungi in the forest

CC-BY-NC 3.0. W.zM.Ciesla, Forest Health Mgmt. Intl., Bugwood.org

Symbionts: fungus-insect

Pathogen

Food for wildlife

The exception

Role of pathogens: good guys

- Diseases can be beneficial
- Stand openings
 - Favors regeneration
 - Increases diversity
 - Increases resilience
- Wild-life habitat
- Nutrient cycling

Young Barn Owls in Tree Nest" by Hunter-Desportes. CC BY 2.0. nttp://www.flickr.com/photos/hdport/3342795998/

Role of pathogens: bad guys

- Conflict between pathogen and user's goals
- Man-made disturbances
 - Fire-suppression
 - Logging: stumps, bark damage: point of pathogen entry
 - Plantations: uniformity is conducive to problems
 - Nurseries: ideal conditions to foster diseases
 - Climate change

Forest Products Association of Canada, FPAC.ca

http://earthobservatory.nasa.gov/IOTD/view.php?id=843

BY-NC 3.0. J.W. Byler, USFS, Bugwood.org

Disease symptoms example: Armillaria root disease

Photo R. Hamelin

Stand level symptoms

Disease symptoms example: Armillaria root disease

Photo R. Hamelin

Disease symptoms example: Armillaria root disease

Photo R. Hamelin

Photo R. Hamelin

Signs of the disease

Armillaria ostoyae, Natural Resources Canada, CFS. https://tidcf.nrcan.gc.ca/diseases/factsheet/78

"Rhizomorphs (thick fungal threads) of Armillaria mellea" Lairich Rig. CC BY-SA 2.0. http://www.geograph.org.uk/photo/933530

Sign: When you see the pathogen

Categories of Forest Pathogens Foliar pathogens

Stem pathogens

Cankers

Root pathogens

CC BY 3.0. R. Williams, USFS, Bugwood.org

Root rots, wilts

Armillaria ostoyae, Natural Resources Canada, CFS. https://tidcf.nrcan.gc.ca/diseases/factsheet/78

Mistletoes

R. Hamelin

CC BY 3.0. Brytten Sn

Rusts

Chrysomyxa arctostaphyli , NRC, CFS. https://tidcf.nrcan.gc.ca/diseases/factsheet/1000053

Melampsora occidentalis, Nat.Res.Canada,CFS. https://tidcf.nrcan.gc.ca/diseases/factsheet/1000050

CC BY-NC 3.0. Petr Kapitola, State Phytosanitary Administration, Bugwood.org

Coleosporium asterum, Nat.Res.Canada, CFS https://tidcf.nrcan.gc.ca/diseases/factsheet/55

CC by 3.0. Joseph O'Brien, USFS, Bugwood.org

Decay fungi

CC BY 3.0. Minnesota Dept.Nat.Res.Archive, Bugwood.org

Brown rot

"Brown rot" by ressaure. CC BY-NC-SA 2.0 http://www.flickr.com/photos/ressaure/5458514343/

White rot

CC BY 3.0. Clemson U.-USDA Coop. Extension Slide Series, Bugwood.org

CC BY-NC 3.0. USDA Forest Service Archive, USFS, Bugwood.org

Source: Dr. Robert Blanchette, U of Minnesota http://forestpathology.cfans.umn.edu/microb es.htm

Root diseases

Source: Fig.12.10, p.312 Forest Health and Protection by Edmonds, R. L., J. K. Agee and R. I. Gara. 2011. Waveland Press, Long Grove, IL. 2nd ed. Used with permission from Waveland Press Dec.13, 2011.

Armillaria root disease

- Widespread worldwide
- Small to very large infection centers
- New York Times article "humongous fungus": 15 ha, 1500 years old, 10000 kg!
- Conflicts with human use of forest

CC BY 3.0. Borys M. Tkacz, USFS, Bugwood.org

Survival and spread

- Root to root contacts
- Rhizomorphs
 - specialized highly adapted structures that can survive in the soil for decades

CC BY-NC 3.0. J.W. Byler, USFS, Bugwood.org

"Rhizomorphs (thick fungal threads) of Armillaria mellea" Lairich Rig. CC BY-SA 2.0. http://www.geograph.org.uk/photo/933530

4millaria ostoyae, Natural Resources Canada, CF. https://tidd.nrcan.gc.ca/diseases/factsheet/78

Host defense

- Host reacts to infection by producing resin, trying to 'pitch out' the fungus
- This defense can be quite successful and trees can live for centuries with Armillaria infection
- But when trees are cut, the stump remains but not connected to a living tree!
- Fungus free to invade stump and occupy a unique niche

CC BY 3.0. USFS Archive, USFS, Bugwood.org

Root disease management

- Inoculum removal
 - Stump removal, or 'stumping'
 - Stumps are pulled out of soil and roots exposed
 - Not necessary to burn or remove since the fungus will stay in the stump and roots, but root contacts are broken

Armillaria ostoyae, Nat.Res.Canada, CFS. https://tidcf.nrcan.gc.ca/diseases/factsheet/78

- But...can cause erosion, compaction, and provide seedbed for alder
- Expensive operation, but can be an investment; if disease is removed stand can return to its full productivity and result in large future gains

Alternate species selection

- Regenerate with less susceptible conifer species
- Hardwood cropping also an option

Inoculum avoidance

- Variable stand density
- 50 cm stump avoidance, still experimental

Biocontrol and chemical

USING HYPHOLOMA FASCICULARE INOCULATION
AS A MEANS TO CONTROL ARMILLARIA
ROOT DISEASE ON CALCAREOUS SOILS:
TRIAL ESTABLISHMENT AND MONITORING

Inoculation of stumps with *Hypholoma fasciculare* as a possible means to control armillaria root disease

Bill Chapman and G. Xiao

Armillaria Root Disease - Southern Interior Forest Region

FIGURE 1. Decision key for different treatment strategies for Armillaria-infested sites by BEC zone/subzone for the Southern Interior Region.

Prevention is the key!

Diagnosis

 Learn how to recognize pathogens, conduct proper diagnosis

Epidemiology

Understand pathogen biology, survival, dissemination

Disease management

Know the toolbox of management options